
1 **The single-particle mixing state and cloud scavenging of black carbon at a**
2 **high-altitude mountain site in southern China**

3

4 Guohua Zhang ¹, Qinhao Lin ^{1,2}, Long Peng ^{1,2}, Xinhui Bi ^{1,*}, Duohong Chen ³, Mei Li ^{4,5}, Lei
5 Li ^{4,5}, Fred J. Brechtel ⁶, Jianxin Chen ⁷, Weijun Yan ⁷, Xinming Wang ¹, Ping'an Peng ¹,
6 Guoying Sheng ¹, Zhen Zhou ³

7

8 ¹State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of
9 Environmental Resources Utilization and Protection, Guangzhou Institute of Geochemistry,
10 Chinese Academy of Sciences, Guangzhou 510640, PR China

11 ²Graduate University of Chinese Academy of Sciences, Beijing 100039, PR China

12 ³ State Environmental Protection Key Laboratory of Regional Air Quality Monitoring,
13 Guangdong Environmental Monitoring Center, Guangzhou 510308, PR China

14 ⁴ Institute of Mass Spectrometer and Atmospheric Environment, Jinan University, Guangzhou
15 510632, China

16 ⁵ Guangdong Provincial Engineering Research Center for on-line source apportionment system
17 of air pollution, Guangzhou 510632, China

18 ⁶ Brechtel Manufacturing Inc., Hayward, 94544, California, USA

19 ⁷ Shaoguan Environmental Monitoring Center, Shaoguan 512026, PR China

20

21 Correspondence should be addressed to Xinhui Bi (bixh@gig.ac.cn)

22 **Highlights**

23 ● In situ investigation of both the mixing state and cloud scavenging of BC in China was
24 first reported.

25 ● Measured BC-containing particles were activated into cloud droplets to the same extent as
26 all the measured particles due to being predominantly mixed with sulfate.

27 ● BC-containing particles with higher fractions of organics were activated relatively less
28 than those with higher fractions of sulfate.

29

30 Abstract

31 In the present study, a ground-based counterflow virtual impactor (GCVI) was used to
32 sample cloud droplet residual (cloud RES) particles, while a parallel PM_{2.5} inlet was used to
33 sample cloud-free or cloud interstitial (cloud INT) particles. The mixing state of black carbon
34 (BC)-containing particles in a size range of 0.1-1.6 μm and the mass concentrations of BC in
35 the cloud-free, RES and INT particles were investigated using a single particle aerosol mass
36 spectrometer (SPAMS) and two aethalometers, respectively, at a mountain site (1690 m a.s.l.)
37 in southern China. The measured BC-containing particles were internally mixed extensively
38 with sulfate, and were activated into cloud droplets to the same extent as all the measured
39 particles. The results indicate the preferential activation of larger particles and/or that the
40 production of secondary compositions shifts the BC-containing particles towards larger sizes.
41 BC-containing particles with an abundance of both sulfate and organics were activated less
42 than those with sulfate but limited organics, implying the importance of the mixing state on the
43 incorporation of BC-containing particles into cloud droplets. The mass scavenging efficiency
44 of BC with an average of 33% was similar for different cloud events independent of the air
45 mass. This is the first time that both the mixing state and cloud scavenging of BC in China have
46 been reported. Since limited information on BC-containing particles in the free troposphere is
47 available, the results also provide an important reference for the representation of BC
48 concentrations, properties, and climate impacts in modeling studies.

49

50 **Keywords:** black carbon, cloud droplet residues, mixing state, scavenging efficiency,

51 interstitial particle

52 1 Introduction

53 Black carbon (BC), also known as soot or elemental carbon, is primarily emitted from
54 incomplete combustion processes (Petzold et al., 2013; Bond et al., 2013). Fresh
55 BC-containing particles are generally hydrophilic due to the presence of thin coatings of
56 inorganic or organic materials (Zuberi et al., 2005), and during transport they become more
57 hydrophilic when further coated through coagulation, condensation and photochemical
58 oxidation (Zuberi et al., 2005; Zaveri et al., 2010; Matsui, 2016). Hydrophilic BC-containing
59 particles can act as cloud condensation nuclei (CCN) and thus modify cloud microphysical
60 properties (Straub et al., 2012; Schroder et al., 2015; Roth et al., 2016). The increase in CCN
61 activity enhances the in-cloud scavenging of BC and thus reduces its lifetime (Zaveri et al.,
62 2010). Aerosol-cloud interactions represent one of the largest uncertainties in our current
63 understanding of human-induced climate forcing (McFiggans et al., 2006; Andreae and
64 Rosenfeld, 2008). Therefore, a more comprehensive understanding of how aerosol particles
65 form cloud droplets is required in order to reduce the uncertainty of the impacts of aerosols
66 on the climate (Furutani et al., 2008).

67 The abilities of particles to act as CCN are largely controlled by their sizes and chemical
68 compositions or mixing state (Dusek et al., 2006; Cubison et al., 2008; Kammermann et al.,
69 2010; Ching et al., 2012; Baustian et al., 2012). Larger aerosol particles were found to be
70 more easily activated into cloud droplets (Drewnick et al., 2007). Zhou et al. (2009) reported
71 higher scavenging rates for sulfate, nitrate and BC than those for organics at Mount Tai in
72 northern China. At the same site, 92% of the cloud residues were attributed to sulfate-related

73 salts (Li et al., 2011b). On the other hand, the chemical compositions of the original CCN
74 would be altered after the evaporation of the cloud droplets through the effective formation
75 of secondary aerosol compositions during cloud processing (Hayden et al., 2008; Herrmann
76 et al., 2015; Roth et al., 2016). For BC-containing particles, the mixing state should be much
77 more significant, since their activation as CCN is primarily attributed to the presence of
78 secondary coatings (Lambe et al., 2015; Schroder et al., 2015). Additionally, the mixing
79 state of BC-containing particles is complex and constantly changing in the atmosphere, and
80 they are highly influenced by the particle size, sources, the formation of secondary species
81 and transport processes (Cahill et al., 2012; Healy et al., 2012; Zhang et al., 2014).

82 Recent in situ studies of cloud droplets have provided the most direct information on the
83 incorporation of BC into clouds. The mass scavenging efficiency was observed to be in a
84 range of 33–74% for BC, which was higher with increasing particle sizes at the Puy de Dome
85 (1465 m a.s.l.), France (Sellegrí et al., 2003), while it ranged from 13% to 50% within
86 different air masses at a coastal Chilean hill (450 m a.s.l.) (Heintzenberg et al., 2016). Cozic
87 et al. (2007) reported a scavenging rate of BC similar to those of bulk aerosols due to its
88 internal mixing state with soluble materials. Wang et al. (2012) showed a higher scavenging
89 efficiency for BC than those for organics. Roth et al. (2016) found an enhanced contribution
90 of BC-containing particles in cloud residues compared to that in interstitial particles.
91 However, Zelenyuk et al. (2010) observed negligible BC in cloud droplet residues above
92 Alaska, USA. Therefore, an in-depth study on the composition, size and mixing state of BC
93 in cloud droplets and interstitial particles is requisite for a better understanding of the

94 interactions between BC and cloud droplets and the influences of anthropogenic emissions
95 on cloud formation in the free troposphere.

96 Single-particle mass spectrometry (SPMS) studies on fog interstitial particles and
97 droplet residual particles were performed previously at an urban site in southern China
98 (Zhang et al., 2012; Bi et al., 2016). The predominance of BC-containing particles that serve
99 as effective fog condensation nuclei highlights the important influence of anthropogenic
100 emissions on the public environment and regional climate (Bi et al., 2016). However, there
101 are no direct observations of the cloud scavenging of BC or the mixing states of cloud
102 interstitial (cloud INT) and droplet residual (cloud RES) BC-containing particles in the
103 high-altitude atmosphere or the free troposphere above China to date. Therefore, the
104 size-resolved mixing state and the scavenging efficiency of BC-containing particles were
105 investigated at a high-altitude site to further our knowledge of (1) the mixing state of
106 BC-containing particles, (2) the influence of the mixing state on the incorporation of BC
107 into cloud droplets, and (3) the influence of anthropogenic activities on cloud formation in
108 the free troposphere above southern China.

109

110 **2 Methods**

111 **2.1 Sampling setup**

112 The observations of cloud events were conducted at the National Atmospheric
113 Background Monitoring Station in Nanling of Guangdong Province, which is located on the
114 top of Mount Tianjing (24°41'56"N, 112°53'56"E, 1690 m a.s.l.) in southern China, from 16

115 to 26 Jan 2016. The site is located in a natural preserve isolated from anthropogenic
116 activities. A map of the location and terrain of the site can be found elsewhere (Lin et al.,
117 2017).

118 Aerosols were introduced into the instruments through two parallel sampling lines. The
119 first inlet is a ground-based counterflow virtual impactor (GCVI) (Model 1205, Brechtel
120 Mfg., Inc., USA) (Bi et al., 2016). The GCVI employs a compact wind tunnel upstream of
121 the CVI inlet (Model 1204) (Shingler et al., 2012) to accelerate fog and cloud droplets into
122 the CVI inlet tip. Similar methodologies have been extensively applied to collect fog/cloud
123 RES particles (e.g., Sorooshian et al., 2013; Roth et al., 2016; van Pinxteren et al., 2016).
124 Upstream of the CVI sampling tip, only the droplets that exceed 8 μm can pass through the
125 counterflow. The sampled cloud droplets enter the evaporation chamber (with an airflow
126 temperature of 40 $^{\circ}\text{C}$), where the droplets are dried, thereby leaving behind cloud RES
127 particles that are capable of acting as CCN. A testing before measurements demonstrates that
128 the influence of background aerosols on the collection of cloud droplets could be negligible
129 (Zhang et al., 2017). The ambient inlet is a PM_{2.5} sampling line that delivers ambient
130 particles during cloud-free periods or cloud INT particles during cloud events. Cloud INT
131 particles were regarded as PM_{2.5} during the cloud events. More detailed description on the
132 sampling can be found in the companion papers (Lin et al., 2017; Zhang et al., 2017).

133 Cloud events were characterized by a sudden drop in visibility and a sharp increase in
134 the relative humidity (RH) measured by the GCVI. An upper-limit visibility threshold of 5
135 km and a lower-limit RH threshold of 95% were established to identify the cloud events and

136 trigger the sampling of the cloud RES particles. A rainfall detector within the GCVI system
137 was used to exclude rainy periods. The enhancement factor (EF) for the particles collected
138 by the GCVI is 5.25 (Shingler et al., 2012). Therefore, the reported mass concentrations for
139 the cloud RES particles in the following text were first divided by 5.25.

140 An illustrative scheme of the instrumentation setup is provided in Fig. S1 in the
141 Supporting Information (SI). Downstream of the GCVI, an aethalometer (Model AE-33,
142 Magee Scientific, USA), a single particle aerosol mass spectrometer (SPAMS, Hexin
143 Analytical Instrument Co., Ltd.) and a scan mobility particle sizer (SMPS, MSP Corporation,
144 USA) were used to measure the concentration of BC, the size-resolved mixing state of the
145 collected particles, and the number size distribution of submicron particles, respectively.
146 Downstream of the ambient inlet, an SMPS (Grimm 5.041, Germany), an aethalometer
147 (Model AE-31, Magee Scientific, USA), and a tapered element oscillating microbalance
148 (Model 1405, TEOM) were used to determine the number size distribution of submicron
149 particles and the mass concentrations of BC and PM_{2.5}, respectively. During the cloud-free
150 periods, the instruments downstream of the GCVI were manually shifted and connected to
151 the ambient PM_{2.5} inlet. During the present study, three cloud events (Cloud I, II, III, each
152 with a RH constantly above 95% for more than 12 hours) were encountered and identified by
153 the GCVI (Lin et al., 2017), as shown in Fig. 1. During Cloud I and II, the cloud RES
154 particles provided by the GCVI were measured by the instruments downstream of the GCVI.
155 During Cloud III, the cloud RES and cloud INT particles were intermittently measured by
156 these instruments at approximately one-hour intervals.

157

158 **2.2 Determinations of the mass concentrations of BC**

159 The AE-31 and AE-33 measured the BC concentration at seven different wavelengths
160 (370, 450, 520, 590, 660, 880 and 950 nm), which are typically represented as equivalent BC
161 (EBC) (Petzold et al., 2013). The measurements are based on the light beam attenuation
162 (ATN) on a filter, which is proportional to the loading of the BC deposit. In this study, the
163 ATN was converted to an EBC concentration at the wavelength of 880 nm. The EBC
164 concentration reported in the present study was measured using the AE-33, which was
165 described in great detail (Drinovec et al., 2015). The limitations and uncertainties of the
166 AE-31 in measuring BC and the necessary corrections were well documented (Weingartner
167 et al., 2003; Arnott et al., 2005; Backman et al., 2016). A brief description of this issue is
168 provided in the Supplement.

169

170 **2.3 Identification of BC-containing particles by the SPAMS**

171 Both the vacuum aerodynamic diameter (d_{va}) and the chemical compositions of the
172 individual particles were analyzed by the SPAMS, as briefly described in the supplement. A
173 detailed description of the performance of the SPAMS can be found elsewhere (Li et al.,
174 2011a). The mass spectra for approximately 75000 particles with d_{va} values in the range of
175 0.1-1.6 μm were obtained by the SPAMS over the study. The diameter is represented herein
176 as d_{va} rather than the equivalent volume diameter (d_{ve}), the conversion for which can be
177 found in the supplement (DeCarlo et al., 2004; Hu et al., 2012). An adaptive resonance

178 theory-based neural network algorithm (ART-2a) was applied to cluster the individual
179 particles based on the presence and intensities of ion peaks (Song et al., 1999) with a
180 vigilance factor of 0.7, a learning rate of 0.05, and 20 iterations. Three BC particle types
181 were obtained: the mass spectra of particles with more carbon cluster ions ($C_n^{+/-}$, $n > 6$) and
182 sulfate (BC-sul1), those with fewer carbon cluster ions ($C_n^{+/-}$, $n \leq 6$) and more intense
183 sulfate (BC-sul2), and those with an abundance of both sulfate and organics (BC-OC-sul).
184 The relative amount of OC to BC for the BC-OC-sul particles is significantly larger than
185 the relative amount of OC in the BC-sul1 and BC-sul2 particles, as indicated in Fig. S2.
186 Over all of the detected BC-containing particles, the BC-sul2 type is the most abundant
187 (63%) particle type, followed by the BC-sul1 (21%) and BC-OC-sul (16%) types. More
188 detailed information regarding the other particle types can be found elsewhere (Lin et al.,
189 2017).
190

191 **3 Results and Discussion**

192 During the sampling periods, the temperature and RH generally varied between $-9.9 -$
193 11.4°C and 6.7 - 100%, respectively. The sampling durations for the cloud-free, cloud RES
194 and cloud INT (only detected in Cloud III) particles were approximately 109, 123, and 26
195 hours, respectively. The detected numbers of the cloud-free, cloud RES, and cloud INT
196 particles by the SPAMS were 48835, 23616, and 1063, respectively. The average number
197 fractions of BC-containing particles in the cloud-free, cloud RES, and cloud INT particles in
198 the size range of $d_{\text{va}} = 0.1\text{-}1.6 \mu\text{m}$ were 44%, 49%, and 53%, respectively. The number

199 fractions of BC-containing particles that were incorporated within the cloud droplets ranged
200 between those observed at an urban site (70%) in southern China (Bi et al., 2016) and those
201 observed at a mountain site (~30%) in Germany (Roth et al., 2016). While some mineral dust
202 might trigger heterogeneous ice nucleation at temperatures below -7°C (Atkinson et al.,
203 2013), this would not influence the discussion on the number fraction and chemistry of the
204 cloud RES BC-containing particles. The sampling duration of the cloud RES particles with
205 an average temperature of $\sim -7^{\circ}\text{C}$ only lasted 2 hours, during which the detected cloud RES
206 BC-containing particles only accounted for ~0.1% of all the detected ones.

207 Air masses from the southwestern continental and marine areas dominated throughout
208 the sampling period, carrying relatively warmer and wetter air masses that benefited the
209 formation of clouds based on the back-trajectory analysis (Lin et al., 2017). Cloud II was
210 strongly influenced by a northeastern air mass in contrast to the southwestern air mass that
211 dominated during Cloud I and III. As shown in Fig. 2, the air mass during Cloud II
212 represents relatively polluted conditions. The mass concentration of EBC during Cloud II
213 was approximate 200 ng m^{-3} , which is four times that ($\sim 50 \text{ ng m}^{-3}$) observed during the
214 other two events. Similarly, the number fraction of the BC-containing particles in the cloud
215 RES particles during Cloud II (~60%) was higher than those during the other two cloud
216 events (< 30%). These results provide direct evidence for the influence of anthropogenic
217 emissions and atmospheric transport on the formation of clouds at the remote high-altitude
218 site in southern China.

219

220 **3.1 Mixing state of BC for cloud-free, residual, and interstitial particles**

221 The dominant ion peaks for the cloud-free, cloud RES, and cloud INT BC-containing
222 particles were those of carbon cluster ions ($C_n^{+/-}$, $n = 1, 2, 3, \dots$), OC fragments (m/z
223 27[C₂H₃]⁺, -26[CN]⁻, 37[C₃H]⁺, and 43[C₂H₃O]⁺), and secondary inorganic species, such as
224 sulfate (-97[HSO₄]⁻), nitrate (-62[NO₃]⁻ and -46[NO₂]⁻), and ammonium (18[NH₄]⁺) (Zhang
225 et al., 2014). The cloud-free BC-containing particles were internally mixed to a great extent
226 with detectable sulfate (97% in number), nitrate (50%), oxidized organics (72%), and/or
227 ammonium (79%), as presented in Fig. S3. The oxidized organics were generally
228 represented as the peak at m/z 43[C₂H₃O]⁺ in SPMS studies (Qin et al., 2012). A similar
229 mixing state of the BC-containing particles has been observed at both urban and mountain
230 sites (Moffet and Prather, 2009; Li et al., 2011c; Cahill et al., 2012). The overwhelming
231 association of BC with sulfate strongly indicates a substantial influence of anthropogenic
232 emissions of sulfate precursors (e.g., SO₂) on the aging of BC (Huang and Yu, 2008;
233 Khalizov et al., 2009; Guo et al., 2012; Peng et al., 2016), which directly enhances the
234 incorporation of BC into clouds as discussed in section 3.2. Compared to the BC-containing
235 particles at urban and suburban sites that are situated close to emission sources, the relative
236 amounts of sulfate and ammonium substantially increased for those at the mountain site, as
237 shown in Fig. S4. The relative peak area (RPA) of each m/z relative to the sum of the peak
238 areas in a mass spectrum was applied herein to represent the relative amount of a species in a
239 particle (e.g., Xing et al., 2011; Jeong et al., 2011; Healy et al., 2013). The enhancement of
240 sulfate in the atmosphere above southern China is reasonable since sulfate accounts for the

241 largest portion of the compositions in this region and should be mainly associated with
242 ammonium (Zhang et al., 2013). As expected, the temporal variations of the RPAs were
243 significantly correlated ($p < 0.01$) between ammonium and sulfate (Fig. S5). These species
244 were generally regarded as secondary components, and thus, such high fractions of the
245 internal mixing state and the enhancement of ammonium and sulfate at the high-altitude site
246 indicates a highly aged state of the BC-containing particles.

247 As shown in Fig. 3, the secondary components were enhanced in the cloud RES
248 BC-containing particles relative to the cloud INT BC-containing particles. The
249 enhancement was more obvious for sulfate rather than for ammonium, oxidized organics or
250 nitrate. The enhancement of sulfate in cloud RES particles has been broadly observed
251 (Zelenyuk et al., 2010; Kamphus et al., 2010; Hiranuma et al., 2011). A comparison of the
252 size distributions of the cloud RES and cloud INT BC-containing particles (Fig. 4) further
253 suggests that the in-cloud addition of secondary components shifted the BC-containing
254 particles towards larger sizes, which is discussed in the following section. Overall, our
255 observations suggest that the BC-containing particles were heavily coated at the
256 high-altitude site before they were incorporated into the cloud droplets and that the
257 in-cloud production of coating materials (e.g., ammonium sulfate) was present. An
258 abundance of BC-coated materials was also observed at Mt. Soledad (Schroder et al., 2015).
259 Unfortunately, their chemical compositions cannot be ruled out by a single particle soot
260 photometer. Therefore, our analysis reflects the importance of the chemical mixing state on
261 the cloud processing of BC.

262

263 **3.2 Fractions of BC incorporated into cloud droplets**

264 **3.2.1 Size-resolved activation of BC-containing particles**

265 The normalized number size distributions of the cloud-free, cloud RES, and cloud INT

266 BC-containing particles are shown in Fig. 4. While these distributions do not represent the

267 actual particle number size distributions, they could reflect the importance of the particle

268 size on the incorporation of BC-containing particles into cloud droplets (Dusek et al., 2006).

269 The cloud RES BC-containing particles had the largest size mode, followed by the

270 cloud-free BC-containing particles with the cloud INT BC-containing particles in the

271 smallest size mode. These size distribution patterns are consistent with those of previous

272 studies (Zelenyuk et al., 2010; Drewnick et al., 2007; Roth et al., 2016), which are indicative

273 of the preferential activation of larger particles and/or the addition of secondary species

274 during in-cloud processing (Schroder et al., 2015). As expected, the BC-containing particles

275 were internally mixed with increasingly higher intensities of sulfate, ammonium and

276 oxidized organics with increasing size (Fig. S6). These results are consistent with the

277 observations by Healy et al. (2012) and Zhang et al. (2014) insomuch that larger

278 BC-containing particles were more thickly coated. The BC-containing particles detected by

279 the SPAMS could track the variations of the BC mass concentration in the present study

280 based on a correlation analysis of the time series of the unscaled number of BC-containing

281 particles and the concentration of EBC (Fig. S7). A detailed discussion on the comparison of

282 these two measurements can be found in the supplement (Yu et al., 2010; Huang et al.,
283 2011; Huang et al., 2012).

284 The size-resolved activated fractions ($N_{f_{act}}$) of the BC-containing particles and all the
285 detected particles were further investigated as a function of their size (Fig. 5). The $N_{f_{act}}$
286 generally increased with an increase in the size, and those of the BC-containing particles
287 were activated to a similar (or slightly lower) extent as those of all the detected particles.
288 This indicates that the coating materials on the BC-containing particles enhanced their
289 ability to act as CCN (Khalizov et al., 2009; Henning et al., 2012; Roth et al., 2016), which is
290 also consistent with the enhanced internal mixing with secondary soluble species with an
291 increase in the size (Fig. S6) discussed above. The increase of $N_{f_{act}}$ with the particle size
292 also suggests that nucleation scavenging is the dominant mechanism for the incorporation
293 of BC-containing particles into cloud droplets (Schroder et al., 2015). The number fractions
294 of the BC-containing particles incorporated into cloud droplets varied between 0.05–0.45
295 (Fig. 5). These fractions represent a rough estimate because the BC-containing particles in
296 the cloud RES and cloud INT particles were measured intermittently rather than
297 simultaneously. Henning et al. (2002) showed that particles with $d_{ve} = 700$ nm were only
298 half activated in less dense clouds (with a liquid water content or LWC < 0.1 g m⁻³), while
299 their diameter decreased to ~ 100 nm when the LWC > 0.2 g m⁻³ at a high-alpine site.

300 Similarly, Hammer et al. (2014) showed that only particles with a d_{ve} larger than 300 - 500
301 nm could be activated under low-LWC conditions (LWC < 0.1 g m⁻³), which is a common
302 condition for the formation of fog at the ground level. With an LWC of approximately 0.1

303 g m⁻³, Schroder et al. (2015) reported even lower activated fractions (0.01–0.1) of
304 BC-containing particles at Mt. Soledad closer to the source region in California, USA.
305 From this perspective, the relatively higher activation fractions of the BC-containing
306 particles in the present study compared to those at Mt. Soledad (Schroder et al., 2015) could
307 be mainly attributed to the long-range transport that resulted in the highly aged BC and
308 possibly the higher LWC.

309 The role of the mixing state on the activation of the BC-containing particles was
310 further investigated through a comparison of the individual particle types of the cloud-free,
311 cloud RES, and cloud INT BC-containing particles. As shown in Fig. 6, the number
312 fraction of BC-OC-sul was much lower in the cloud RES (~8%) than those (~25%) in the
313 cloud-free and cloud INT BC-containing particles. Despite the different distributions of the
314 BC particle types, the BC-sul1 and BC-sul2 types were dominant, while the BC-OC-sul type
315 contributed only a limited fraction to the cloud RES BC-containing particles during each of
316 the cloud events. Consistently, the N_{f_{act}} of the BC-OC-sul particles was generally lower
317 than 0.1 over the detected size range, which is much lower than those for the BC-sul1 and
318 BC-sul2 types (Fig. S8). Furthermore, the organic-dominated particle types (organics
319 internally mixed with sulfate and negligible BC (Lin et al., 2017)) in all the detected
320 particles was activated to a lesser extent, as presented in Fig. S9. Distinct differences in the
321 mixing state accompanied the observations of cloud RES BC-containing particles.
322 BC-containing residuals with more sulfate and fewer organics were observed more
323 frequently than those with more organics and less sulfate.

324

325 **3.2.2 Mass scavenging efficiency of EBC**

326 The concentration of EBC (5th - 95th) obtained using the AE33 for cloud-free air varied
327 over a wide range of 57 - 812 ng m⁻³ with a mean value of 418 ± 248 ng m⁻³, which accounted
328 for ~2% of the PM_{2.5} on average. The average concentrations of cloud RES and INT EBC
329 were 84 ± 75 , and 198 ± 125 ng m⁻³, respectively. A relatively lower contribution of EBC to
330 the aerosol population supports a substantial addition of secondary aerosols during
331 transport to the high-altitude site, given that EBC represents far more than ~2% of the fine
332 particles near the source regions of southern China (Lan et al., 2013; Wu et al., 2013;
333 Zhang et al., 2013). The observed relatively lower fraction of EBC is consistent with the
334 highly aged state of BC-containing particles at the high-altitude site rather than at urban
335 and suburban sites, as discussed in section 3.1. The mean concentration is much lower than
336 those observed for urban (6000 ng m⁻³) and rural (2600 ng m⁻³) areas (Huang et al., 2012),
337 it is similar to those observed at an oceanic site (540 ng m⁻³) in southern China (Wu et al.,
338 2013) and at the high-altitude Mt. Rax site (430-720 ng m⁻³) (Hitzenberger et al., 2001),
339 and it is several times higher than those at a marine boundary layer site (70 ng m⁻³) in
340 California, USA (Schroder et al., 2015), the mid-altitude regions (~60 ng m⁻³) of Nova
341 Scotia, Canada (Chýlek et al., 1996), and the high alpine Jungfraujoch station (50-60 ng
342 m⁻³) in Switzerland (Cozic et al., 2007). Additional detailed information on the sampling
343 sites and BC concentrations can be found in Table S1. These comparisons suggest that

344 anthropogenic activities have a relatively large impact on the concentration of EBC at the
345 high-altitude site.

346 It can be seen from Fig. 1 that cloud scavenging could have a strong effect on the
347 decreased particle concentrations (i.e., of EBC and PM_{2.5}). A sharp reduction in the particle
348 concentrations were observed at the beginning of the cloud events. The mass-scavenging
349 efficiency of BC ($Mf_{scav,EBC}$), defined as the fraction of EBC incorporated into cloud
350 droplets relative to the total amount of EBC (Cozic et al., 2007), was evaluated as

351
$$Mf_{scav,EBC} = EBC_{RES}/(EBC_{RES} + EBC_{INT}) \times 100\% \quad (R1)$$

352 Since the EBC_{RES} and EBC_{INT} were not simultaneously obtained using the AE-33, the
353 EBC_{INT} measured concurrently by the AE-31 was applied in the calculation. The EBC
354 measured using the AE-31 is significantly correlated ($R^2 = 0.9, p < 0.001$) with and only
355 slightly lower than that measured by the AE-33, as shown in Fig. S10. This validates the
356 calculation in R1. The overall uncertainty in the $Mf_{scav,EBC}$ is within 10%, as assessed in the
357 supplement. The measurements of EBC and the sampling of the cloud RES particles were
358 regarded as the main influential factors.

359 The $Mf_{scav,EBC}$ ranged between 15 - 54% (5th - 95th) with an average of approximately
360 33%. The $Mf_{scav,EBC}$ in this study is within the range of those values (33-54%) reported for
361 mid-altitude (approximately 1500 m) mountain sites, generally lower than those reported
362 (45-74%) for high-altitude (approximately 3000 m) mountain sites, and higher than those
363 reported (6-15%) for ground sites (Cozic et al., 2007 and references therein). The
364 differences among the various observations are generally attributed to the water content

365 and the sizes and mixing state of the BC-containing particles (Cozic et al., 2007). The
366 $Mf_{scav,EBC}$ was not so different for the cloud events (Fig. S11) impacted by different air
367 masses, which is consistent with the highly aged state of the BC observed in this study.
368 These results indicate that the incorporation of BC into clouds was dominantly controlled by
369 its mixing state rather than other factors (e.g., the air mass or the concentration of EBC)
370 under low-LWC conditions (e.g., $< 0.1 \text{ g m}^{-3}$).

371

372 **4 Conclusions**

373 The influences of the size and mixing state on the incorporation of BC in clouds were
374 investigated at a remote high-altitude mountain site in southern China. On average, the mass
375 concentration of EBC was 418 ± 248 , 84 ± 75 , and $198 \pm 125 \text{ ng m}^{-3}$ for cloud-free, cloud
376 RES, and cloud INT particles, respectively. The BC was highly aged through the
377 predominant accumulation of sulfate during transport. BC-containing particles were found
378 to be scavenged in the cloud phase to a similar extent as bulk aerosols. The size-resolved
379 activation fraction of BC-containing particles was estimated to be in the range of 0.05–0.45;
380 it increased with an increase in the size and was mainly controlled by the mixing state with
381 secondary soluble species. Our results are restricted to particles in the size range of 0.1–1.6
382 μm , and thus, particles with sizes smaller than $0.1 \mu\text{m}$ that might serve as CCN are beyond
383 the scope of this study. The mass-scavenging efficiency of BC varied between 15–54% and
384 was independent of the air mass. This paper provides the first direct evidence on the
385 substantial contribution of BC-containing particles to cloud droplet residues in the free

386 troposphere of southern China. The data are also useful for constraining models used for
387 predicting BC concentrations in the free troposphere.

388

389 **Acknowledgement**

390 This work was supported by the National Key Research and Development Program of
391 China (2017YFC0210104), the National Natural Science Foundation of China (No.
392 91544101 and 41775124), the Foundation for Leading Talents of the Guangdong Province
393 Government, and the State Key Laboratory of Organic Geochemistry (SKLOGA201603A
394 and SKLOGC201604).

395 **References**

396 Allen, J. O., Fergenson, D. P., Gard, E. E., Hughes, L. S., Morrical, B. D., Kleeman, M. J.,
397 Gross, D. S., Galli, M. E., Prather, K. A., and Cass, G. R.: Particle detection efficiencies of
398 aerosol time of flight mass spectrometers under ambient sampling conditions, *Environ. Sci.*
399 *Technol.*, 34, 211-217, 2000.

400 Andreae, M. O., and Rosenfeld, D.: Aerosol–cloud–precipitation interactions. Part 1. The
401 nature and sources of cloud-active aerosols, *Earth-Sci. Rev.*, 89, 13-41,
402 doi:<http://dx.doi.org/10.1016/j.earscirev.2008.03.001>, 2008.

403 Arnott, W. P., Hamasha, K., Moosmuller, H., Sheridan, P. J., and Ogren, J. A.: Towards
404 aerosol light-absorption measurements with a 7-wavelength Aethalometer: Evaluation with a
405 photoacoustic instrument and 3-wavelength nephelometer, *Aerosol Sci. Tech.*, 39, 17-29,
406 doi:10.1080/027868290901972, 2005.

407 Atkinson, J. D., Murray, B. J., Woodhouse, M. T., Whale, T. F., Baustian, K. J., Carslaw,
408 K. S., Dobbie, S., O'Sullivan, D., and Malkin, T. L.: The importance of feldspar for ice
409 nucleation by mineral dust in mixed-phase clouds, *Nature*, 498, 355-358,
410 doi:10.1038/nature12278, 2013.

411 Backman, J., Schmeisser, L., Virkkula, A., Ogren, J. A., Asmi, E., Starkweather, S.,
412 Sharma, S., Eleftheriadis, K., Uttal, T., Jefferson, A., Bergin, M., and Makshtas, A.: On
413 Aethalometer measurement uncertainties and multiple scattering enhancement in the Arctic,
414 *Atmos. Meas. Tech. Discuss.*, 2016, 1-31, doi:10.5194/amt-2016-294, 2016.

415 Baustian, K. J., Cziczo, D. J., Wise, M. E., Pratt, K. A., Kulkarni, G., Hallar, A. G., and
416 Tolbert, M. A.: Importance of aerosol composition, mixing state, and morphology for
417 heterogeneous ice nucleation: A combined field and laboratory approach, *J. Geophys. Res.*, 117,
418 2240-2260, doi:10.1029/2011jd016784, 2012.

419 Bi, X. H., Lin, Q. H., Peng, L., Zhang, G. H., Wang, X. M., Brechtel, F. J., Chen, D. H., Li,
420 M., Peng, P. A., Sheng, G. Y., and Zhou, Z.: In situ detection of the chemistry of individual fog
421 droplet residues in the Pearl River Delta region, China, *J. Geophys. Res.-Atmos.*, 121,
422 9105-9116, doi:10.1002/2016JD024886, 2016.

423 Bond, T. C., Doherty, S. J., Fahey, D. W., Forster, P. M., Berntsen, T., DeAngelo, B. J.,
424 Flanner, M. G., Ghan, S., Karcher, B., Koch, D., Kinne, S., Kondo, Y., Quinn, P. K., Sarofim,
425 M. C., Schultz, M. G., Schulz, M., Venkataraman, C., Zhang, H., Zhang, S., Bellouin, N.,
426 Guttikunda, S. K., Hopke, P. K., Jacobson, M. Z., Kaiser, J. W., Klimont, Z., Lohmann, U.,
427 Schwarz, J. P., Shindell, D., Storelvmo, T., Warren, S. G., and Zender, C. S.: Bounding the role
428 of black carbon in the climate system: A scientific assessment, *J. Geophys. Res.-Atmos.*, 118,
429 5380-5552, doi:10.1002/Jgrd.50171, 2013.

430 Cahill, J. F., Suski, K., Seinfeld, J. H., Zaveri, R. A., and Prather, K. A.: The mixing state
431 of carbonaceous aerosol particles in northern and southern California measured during CARES
432 and CalNex 2010, *Atmos. Chem. Phys.*, 12, 10989-11002, doi:10.5194/acp-12-10989-2012,
433 2012.

434 Chýlek, P., Banic, C. M., Johnson, B., Damiano, P. A., Isaac, G. A., Leaitch, W. R., Liu, P.
435 S. K., Boudala, F. S., Winter, B., and Ngo, D.: Black carbon: Atmospheric concentrations and
436 cloud water content measurements over southern Nova Scotia, *J. Geophys. Res.-Atmos.*, 101,
437 29105-29110, doi:10.1029/95JD03433, 1996.

438 Ching, J., Riemer, N., and West, M.: Impacts of black carbon mixing state on black carbon
439 nucleation scavenging: Insights from a particle-resolved model, *J. Geophys. Res.-Atmos.*, 117,
440 1-21, 2012.

441 Cozic, J., Verheggen, B., Mertes, S., Connolly, P., Bower, K., Petzold, A., Baltensperger,
442 U., and Weingartner, E.: Scavenging of black carbon in mixed phase clouds at the high alpine
443 site Jungfraujoch, *Atmos. Chem. Phys.*, 7, 1797-1807, 2007.

444 Cubison, M. J., Ervens, B., Feingold, G., Docherty, K. S., Ulbrich, I. M., Shields, L.,
445 Prather, K., Hering, S., and Jimenez, J. L.: The influence of chemical composition and mixing
446 state of Los Angeles urban aerosol on CCN number and cloud properties, *Atmos. Chem. Phys.*,
447 8, 5649-5667, 2008.

448 DeCarlo, P. F., Slowik, J. G., Worsnop, D. R., Davidovits, P., and Jimenez, J. L.: Particle
449 morphology and density characterization by combined mobility and aerodynamic diameter

450 measurements. Part 1: Theory, *Aerosol Sci. Tech.*, 38, 1185-1205,
451 doi:10.1080/027868290903907, 2004.

452 Drewnick, F., Schneider, J., Hings, S. S., Hock, N., Noone, K., Targino, A., Weimer, S.,
453 and Borrmann, S.: Measurement of ambient, interstitial, and residual aerosol particles on a
454 mountaintop site in central Sweden using an aerosol mass spectrometer and a CVI, *J. Atmos.*
455 *Chem.*, 56, 1-20, doi:10.1007/s10874-006-9036-8, 2007.

456 Drinovec, L., Močnik, G., Zotter, P., Prévôt, A. S. H., Ruckstuhl, C., Coz, E., Rupakheti,
457 M., Sciare, J., Müller, T., Wiedensohler, A., and Hansen, A. D. A.: The "dual-spot"
458 Aethalometer: an improved measurement of aerosol black carbon with real-time loading
459 compensation, *Atmos. Meas. Tech.*, 8, 1965-1979, doi:10.5194/amt-8-1965-2015, 2015.

460 Dusek, U., Frank, G. P., Hildebrandt, L., Curtius, J., Schneider, J., Walter, S., Chand, D.,
461 Drewnick, F., Hings, S., Jung, D., Borrmann, S., and Andreae, M. O.: Size matters more than
462 chemistry for cloud-nucleating ability of aerosol particles, *Science*, 312, 1375-1378,
463 doi:10.1126/science.1125261, 2006.

464 Furutani, H., Dall'osto, M., Roberts, G. C., and Prather, K. A.: Assessment of the relative
465 importance of atmospheric aging on CCN activity derived from field observations, *Atmos.*
466 *Environ.*, 42, 3130-3142, doi:10.1016/j.atmosenv.2007.09.024, 2008.

467 Guo, J., Wang, Y., Shen, X. H., Wang, Z., Lee, T., Wang, X. F., Li, P. H., Sun, M. H.,
468 Collett, J. L., Wang, W. X., and Wang, T.: Characterization of cloud water chemistry at Mount
469 Tai, China: Seasonal variation, anthropogenic impact, and cloud processing, *Atmos. Environ.*,
470 60, 467-476, doi:10.1016/j.atmosenv.2012.07.016, 2012.

471 Hammer, E., Gysel, M., Roberts, G. C., Elias, T., Hofer, J., Hoyle, C. R., Bukowiecki, N.,
472 Dupont, J. C., Burnet, F., Baltensperger, U., and Weingartner, E.: Size-dependent particle
473 activation properties in fog during the ParisFog 2012/13 field campaign, *Atmos. Chem. Phys.*,
474 14, 10517-10533, doi:10.5194/acp-14-10517-2014, 2014.

475 Hayden, K. L., Macdonald, A. M., Gong, W., Toom-Sauntry, D., Anlauf, K. G., Leithead,
476 A., Li, S. M., Leitch, W. R., and Noone, K.: Cloud processing of nitrate, *J. Geophys.*
477 *Res.-Atmos.*, 113, 1-18, doi:10.1029/2007jd009732, 2008.

478 Healy, R. M., Sciare, J., Poulain, L., Kamili, K., Merkel, M., Muller, T., Wiedensohler, A.,
479 Eckhardt, S., Stohl, A., Sarda-Esteve, R., McGillicuddy, E., O'Connor, I. P., Sodeau, J. R., and
480 Wenger, J. C.: Sources and mixing state of size-resolved elemental carbon particles in a
481 European megacity: Paris, Atmos. Chem. Phys., 12, 1681-1700,
482 doi:10.5194/acp-12-1681-2012, 2012.

483 Healy, R. M., Sciare, J., Poulain, L., Crippa, M., Wiedensohler, A., Prevot, A. S. H.,
484 Baltensperger, U., Sarda-Esteve, R., McGuire, M. L., Jeong, C. H., McGillicuddy, E.,
485 O'Connor, I. P., Sodeau, J. R., Evans, G. J., and Wenger, J. C.: Quantitative determination of
486 carbonaceous particle mixing state in Paris using single-particle mass spectrometer and aerosol
487 mass spectrometer measurements, Atmos. Chem. Phys., 13, 9479-9496,
488 doi:10.5194/acp-13-9479-2013, 2013.

489 Heintzenberg, J., Cereceda-Balic, F., Vidal, V., and Leck, C.: Scavenging of black carbon
490 in Chilean coastal fogs, Sci. Total. Environ., 541, 341-347, 2016.

491 Henning, S., Weingartner, E., Schmidt, S., Wendisch, M., Gaggeler, H. W., and
492 Baltensperger, U.: Size-dependent aerosol activation at the high-alpine site Jungfraujoch (3580
493 m asl), Tellus B, 54, 82-95, 2002.

494 Henning, S., Ziese, M., Kiselev, A., Saathoff, H., Mohler, O., Mentel, T. F., Buchholz, A.,
495 Spindler, C., Michaud, V., Monier, M., Sellegrí, K., and Stratmann, F.: Hygroscopic growth
496 and droplet activation of soot particles: uncoated, succinic or sulfuric acid coated, Atmos.
497 Chem. Phys., 12, 4525-4537, doi:10.5194/acp-12-4525-2012, 2012.

498 Herrmann, H., Schaefer, T., Tilgner, A., Styler, S. A., Weller, C., Teich, M., and Otto, T.:
499 Tropospheric Aqueous-Phase Chemistry: Kinetics, Mechanisms, and Its Coupling to a
500 Changing Gas Phase, Chem. Rev., 115, 4259-4334, doi:10.1021/cr500447k, 2015.

501 Hiranuma, N., Kohn, M., Pekour, M. S., Nelson, D. A., Shilling, J. E., and Cziczo, D. J.:
502 Droplet activation, separation, and compositional analysis: laboratory studies and atmospheric
503 measurements, Atmos. Meas. Tech., 4, 2333-2343, doi:10.5194/amt-4-2333-2011, 2011.

504 Hitzenberger, R., Berner, A., Glebl, H., Drobisch, K., Kasper-Giebl, A., Loeflund, M.,
505 Urban, H., and Puxbaum, H.: Black carbon (BC) in alpine aerosols and cloud water -
506 concentrations and scavenging efficiencies, *Atmos. Environ.*, 35, 5135-5141, 2001.

507 Hu, M., Peng, J. F., Sun, K., Yue, D. L., Guo, S., Wiedensohler, A., and Wu, Z. J.:
508 Estimation of Size-Resolved Ambient Particle Density Based on the Measurement of Aerosol
509 Number, Mass, and Chemical Size Distributions in the Winter in Beijing, *Environ. Sci.*
510 *Technol.*, 46, 9941-9947, doi:10.1021/Es204073t, 2012.

511 Huang, X. F., and Yu, J. Z.: Size distributions of elemental carbon in the atmosphere of a
512 coastal urban area in South China: characteristics, evolution processes, and implications for the
513 mixing state, *Atmos. Chem. Phys.*, 8, 5843-5853, 2008.

514 Huang, X. F., Gao, R. S., Schwarz, J. P., He, L. Y., Fahey, D. W., Watts, L. A.,
515 McComiskey, A., Cooper, O. R., Sun, T. L., Zeng, L. W., Hu, M., and Zhang, Y. H.: Black
516 carbon measurements in the Pearl River Delta region of China, *J. Geophys. Res.*, 116, 445-451,
517 doi:10.1029/2010jd014933, 2011.

518 Huang, X. F., Sun, T. L., Zeng, L. W., Yu, G. H., and Luan, S. J.: Black carbon aerosol
519 characterization in a coastal city in South China using a single particle soot photometer, *Atmos.*
520 *Environ.*, 51, 21-28, doi:10.1016/j.atmosenv.2012.01.056, 2012.

521 Jeong, C. H., McGuire, M. L., Godri, K. J., Slowik, J. G., Rehbein, P. J. G., and Evans, G.
522 J.: Quantification of aerosol chemical composition using continuous single particle
523 measurements, *Atmos. Chem. Phys.*, 11, 7027-7044, doi:10.5194/acp-11-7027-2011, 2011.

524 Kammermann, L., Gysel, M., Weingartner, E., Herich, H., Cziczo, D. J., Holst, T.,
525 Svenningsson, B., Arneth, A., and Baltensperger, U.: Subarctic atmospheric aerosol
526 composition: 3. Measured and modeled properties of cloud condensation nuclei, *J. Geophys.*
527 *Res.-Atmos.*, 115, 288-303, doi:10.1029/2009jd012447, 2010.

528 Kamphus, M., Ettner-Mahl, M., Klimach, T., Drewnick, F., Keller, L., Cziczo, D. J.,
529 Mertes, S., Borrmann, S., and Curtius, J.: Chemical composition of ambient aerosol, ice
530 residues and cloud droplet residues in mixed-phase clouds: single particle analysis during the

531 Cloud and Aerosol Characterization Experiment (CLACE 6), *Atmos. Chem. Phys.*, 10,
532 8077-8095, doi:10.5194/acp-10-8077-2010, 2010.

533 Khalizov, A. F., Zhang, R. Y., Zhang, D., Xue, H. X., Pagels, J., and McMurry, P. H.:
534 Formation of highly hygroscopic soot aerosols upon internal mixing with sulfuric acid vapor, *J.*
535 *Geophys. Res.-Atmos.*, 114, 730-734, doi:10.1029/2008jd010595, 2009.

536 Lambe, A. T., Ahern, A. T., Wright, J. P., Croasdale, D. R., Davidovits, P., and Onasch, T.
537 B.: Oxidative aging and cloud condensation nuclei activation of laboratory combustion soot, *J.*
538 *Aerosol Sci.*, 79, 31-39, 2015.

539 Lan, Z. J., Huang, X. F., Yu, K. Y., Sun, T. L., Zeng, L. W., and Hu, M.: Light absorption
540 of black carbon aerosol and its enhancement by mixing state in an urban atmosphere in South
541 China, *Atmos. Environ.*, 69, 118-123, doi:10.1016/j.atmosenv.2012.12.009, 2013.

542 Li, L., Huang, Z. X., Dong, J. G., Li, M., Gao, W., Nian, H. Q., Fu, Z., Zhang, G. H., Bi, X.
543 H., Cheng, P., and Zhou, Z.: Real time bipolar time-of-flight mass spectrometer for analyzing
544 single aerosol particles, *Intl. J. Mass. Spectrom.*, 303, 118-124, doi:10.1016/j.ijms.2011.01.017,
545 2011a.

546 Li, W. J., Li, P. R., Sun, G. D., Zhou, S. Z., Yuan, Q., and Wang, W. X.: Cloud residues
547 and interstitial aerosols from non-precipitating clouds over an industrial and urban area in
548 northern China, *Atmos. Environ.*, 45, 2488-2495, doi:10.1016/j.atmosenv.2011.02.044, 2011b.

549 Li, W. J., Zhou, S. Z., Wang, X. F., Xu, Z., Yuan, C., Yu, Y. C., Zhang, Q. Z., and Wang,
550 W. X.: Integrated evaluation of aerosols from regional brown hazes over northern China in
551 winter: Concentrations, sources, transformation, and mixing states, *J. Geophys. Res.*, 116, 1-11,
552 doi:10.1029/2010jd015099, 2011c.

553 Lin, Q., Zhang, G., Peng, L., Bi, X., Wang, X., Brechtel, F. J., Li, M., Chen, D., Peng, P.,
554 Sheng, G., and Zhou, Z.: In situ chemical composition measurement of individual cloud residue
555 particles at a mountain site, southern China, *Atmos. Chem. Phys.*, 17, 8473-8488,
556 doi:10.5194/acp-17-8473-2017, 2017.

557 Matsui, H.: Black carbon simulations using a size- and mixing-state-resolved
558 three-dimensional model: 2. Aging timescale and its impact over East Asia, *J. Geophys.*
559 *Res.-Atmos.*, 121, 1808-1821, doi:10.1002/2015jd023999, 2016.

560 McFiggans, G., Artaxo, P., Baltensperger, U., Coe, H., Facchini, M. C., Feingold, G.,
561 Fuzzi, S., Gysel, M., Laaksonen, A., Lohmann, U., Mentel, T. F., Murphy, D. M., O'Dowd, C.
562 D., Snider, J. R., and Weingartner, E.: The effect of physical and chemical aerosol properties on
563 warm cloud droplet activation, *Atmos. Chem. Phys.*, 6, 2593-2649, 2006.

564 Moffet, R. C., and Prather, K. A.: In-situ measurements of the mixing state and optical
565 properties of soot with implications for radiative forcing estimates, *Proc. Natl. Acad. Sci. USA*,
566 106, 11872-11877, doi:10.1073/pnas.0900040106, 2009.

567 Peng, J. F., Hu, M., Guo, S., Du, Z. F., Zheng, J., Shang, D. J., Zamora, M. L., Zeng, L. M.,
568 Shao, M., Wu, Y. S., Zheng, J., Wang, Y., Glen, C. R., Collins, D. R., Molina, M. J., and Zhang,
569 R. Y.: Markedly enhanced absorption and direct radiative forcing of black carbon under
570 polluted urban environments, *Proc. Natl. Acad. Sci. USA*, 113, 4266-4271,
571 doi:10.1073/pnas.1602310113, 2016.

572 Petzold, A., Ogren, J. A., Fiebig, M., Laj, P., Li, S. M., Baltensperger, U., Holzer-Popp, T.,
573 Kinne, S., Pappalardo, G., Sugimoto, N., Wehrli, C., Wiedensohler, A., and Zhang, X. Y.:
574 Recommendations for reporting "black carbon" measurements, *Atmos. Chem. Phys.*, 13,
575 8365-8379, 2013.

576 Qin, X. Y., Bhawe, P. V., and Prather, K. A.: Comparison of two methods for obtaining
577 quantitative mass concentrations from aerosol time-of-flight mass spectrometry measurements,
578 *Anal. Chem.*, 78, 6169-6178, doi:10.1021/ac060395q, 2006.

579 Qin, X. Y., Pratt, K. A., Shields, L. G., Toner, S. M., and Prather, K. A.: Seasonal
580 comparisons of single-particle chemical mixing state in Riverside, CA, *Atmos. Environ.*, 59,
581 587-596, doi:10.1016/j.atmosenv.2012.05.032, 2012.

582 Roth, A., Schneider, J., Klimach, T., Mertes, S., van Pinxteren, D., Herrmann, H., and
583 Borrmann, S.: Aerosol properties, source identification, and cloud processing in orographic

584 clouds measured by single particle mass spectrometry on a central European mountain site
585 during HCCT-2010, *Atmos. Chem. Phys.*, 16, 505-524, doi:10.5194/acp-16-505-2016, 2016.

586 Schröder, J. C., Hanna, S. J., Modini, R. L., Corrigan, A. L., Kreidenwies, S. M.,
587 Macdonald, A. M., Noone, K. J., Russell, L. M., Leaitch, W. R., and Bertram, A. K.:
588 Size-resolved observations of refractory black carbon particles in cloud droplets at a marine
589 boundary layer site, *Atmos. Chem. Phys.*, 15, 1367-1383, doi:10.5194/acp-15-1367-2015,
590 2015.

591 Sellegri, K., Laj, P., Dupuy, R., Legrand, M., Preunkert, S., and Putaud, J. P.:
592 Size-dependent scavenging efficiencies of multicomponent atmospheric aerosols in clouds, *J.
593 Geophys. Res.-Atmos.*, 108, 651-663, 2003.

594 Shingler, T., Dey, S., Sorooshian, A., Brechtel, F. J., Wang, Z., Metcalf, A., Coggon, M.,
595 Mulmenstadt, J., Russell, L. M., Jonsson, H. H., and Seinfeld, J. H.: Characterisation and
596 airborne deployment of a new counterflow virtual impactor inlet, *Atmos. Meas. Tech.*, 5,
597 1259-1269, doi:10.5194/amt-5-1259-2012, 2012.

598 Song, X. H., Hopke, P. K., Fergenson, D. P., and Prather, K. A.: Classification of single
599 particles analyzed by ATOFMS using an artificial neural network, ART-2A, *Anal. Chem.*, 71,
600 860-865, 1999.

601 Sorooshian, A., Wang, Z., Coggon, M. M., Jonsson, H. H., and Ervens, B.: Observations
602 of Sharp Oxalate Reductions in Stratocumulus Clouds at Variable Altitudes: Organic Acid and
603 Metal Measurements During the 2011 E-PEACE Campaign, *Environ. Sci. Technol.*, 47,
604 7747-7756, doi:10.1021/es4012383, 2013.

605 Straub, D. J., Hutchings, J. W., and Herckes, P.: Measurements of fog composition at a
606 rural site, *Atmos. Environ.*, 47, 195-205, doi:10.1016/j.atmosenv.2011.11.014, 2012.

607 van Pinxteren, D., Fomba, K. W., Mertes, S., Muller, K., Spindler, G., Schneider, J., Lee,
608 T., Collett, J. L., and Herrmann, H.: Cloud water composition during HCCT-2010: Scavenging
609 efficiencies, solute concentrations, and droplet size dependence of inorganic ions and dissolved
610 organic carbon, *Atmos. Chem. Phys.*, 16, 3185-3205, doi:10.5194/acp-16-3185-2016, 2016.

611 Wang, Z., Wang, T., Guo, J., Gao, R., Xue, L. K., Zhang, J. M., Zhou, Y., Zhou, X. H.,
612 Zhang, Q. Z., and Wang, W. X.: Formation of secondary organic carbon and cloud impact on
613 carbonaceous aerosols at Mount Tai, North China, *Atmos. Environ.*, 46, 516-527,
614 doi:10.1016/j.atmosenv.2011.08.019, 2012.

615 Weingartner, E., Saathoff, H., Schnaiter, M., Streit, N., Bitnar, B., and Baltensperger, U.:
616 Absorption of light by soot particles: determination of the absorption coefficient by means of
617 aethalometers, *J. Aerosol Sci.*, 34, 1445-1463,
618 doi:[http://dx.doi.org/10.1016/S0021-8502\(03\)00359-8](http://dx.doi.org/10.1016/S0021-8502(03)00359-8), 2003.

619 Wenzel, R. J., Liu, D. Y., Edgerton, E. S., and Prather, K. A.: Aerosol time-of-flight mass
620 spectrometry during the Atlanta Supersite Experiment: 2. Scaling procedures, *J. Geophys.*
621 *Res.-Atmos.*, 108, 447-457, doi:10.1029/2001jd001563, 2003.

622 Wu, D., Wu, C., Liao, B., Chen, H., Wu, M., Li, F., Tan, H., Deng, T., Li, H., Jiang, D.,
623 and Yu, J. Z.: Black carbon over the South China Sea and in various continental locations in
624 South China, *Atmos. Chem. Phys.*, 13, 12257-12270, doi:10.5194/acp-13-12257-2013, 2013.

625 Xing, J. H., Takahashi, K., Yabushita, A., Kinugawa, T., Nakayama, T., Matsumi, Y.,
626 Tonokura, K., Takami, A., Imamura, T., Sato, K., Kawasaki, M., Hikida, T., and Shimono, A.:
627 Characterization of Aerosol Particles in the Tokyo Metropolitan Area using Two Different
628 Particle Mass Spectrometers, *Aerosol Sci. Tech.*, 45, 315-326,
629 doi:10.1080/02786826.2010.533720, 2011.

630 Yu, H., Wu, C., Wu, D., and Yu, J. Z.: Size distributions of elemental carbon and its
631 contribution to light extinction in urban and rural locations in the pearl river delta region, China,
632 *Atmos. Chem. Phys.*, 10, 5107-5119, doi:10.5194/acp-10-5107-2010, 2010.

633 Zaveri, R. A., Barnard, J. C., Easter, R. C., Riemer, N., and West, M.: Particle-resolved
634 simulation of aerosol size, composition, mixing state, and the associated optical and cloud
635 condensation nuclei activation properties in an evolving urban plume, *J. Geophys. Res.-Atmos.*,
636 115, 1383-1392, doi:10.1029/2009jd013616, 2010.

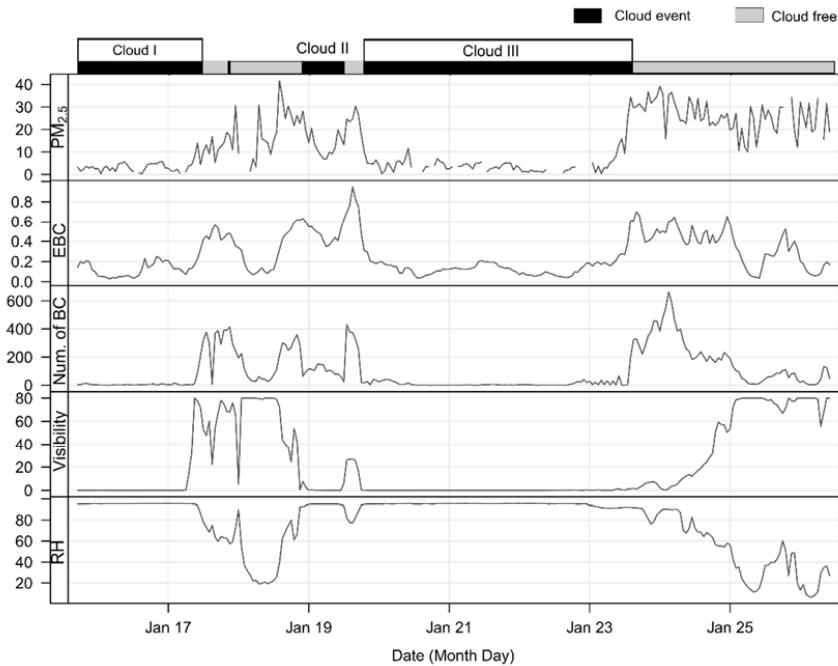
637 Zelenyuk, A., Imre, D., Earle, M., Easter, R., Korolev, A., Leaitch, R., Liu, P., Macdonald,
638 A. M., Ovchinnikov, M., and Strapp, W.: In Situ Characterization of Cloud Condensation

639 Nuclei, Interstitial, and Background Particles Using the Single Particle Mass Spectrometer,
640 SPLAT II, Anal. Chem., 82, 7943-7951, doi:10.1021/AC1013892, 2010.
641 Zhang, G., Lin, Q., Peng, L., Yang, Y., Fu, Y., Bi, X., Li, M., Chen, D., Chen, J., Cai, Z.,
642 Wang, X., Peng, P., Sheng, G., and Zhou, Z.: Insight into the in-cloud formation of oxalate
643 based on in situ measurement by single particle mass spectrometry, Atmos. Chem. Phys.
644 Discuss., 2017, 1-39, doi:10.5194/acp-2017-763, 2017.
645 Zhang, G. H., Bi, X. H., Chan, L. Y., Li, L., Wang, X. M., Feng, J. L., Sheng, G. Y., Fu, J.
646 M., Li, M., and Zhou, Z.: Enhanced trimethylamine-containing particles during fog events
647 detected by single particle aerosol mass spectrometry in urban Guangzhou, China, Atmos.
648 Environ., 55, 121-126, doi:10.1016/j.atmosenv.2012.03.038, 2012.
649 Zhang, G. H., Bi, X. H., Chan, L. Y., Wang, X. M., Sheng, G. Y., and Fu, J. M.:
650 Size-segregated chemical characteristics of aerosol during haze in an urban area of the Pearl
651 River Delta region, China, Urban Climate, 4, 74-84, doi:10.1016/j.uclim.2013.05.002, 2013.
652 Zhang, G. H., Bi, X. H., He, J. J., Chen, D. H., Chan, L. Y., Xie, G. W., Wang, X. M.,
653 Sheng, G. Y., Fu, J. M., and Zhou, Z.: Variation of secondary coatings associated with
654 elemental carbon by single particle analysis, Atmos. Environ., 92, 162-170,
655 doi:10.1016/j.atmosenv.2014.04.018, 2014.
656 Zhou, Y., Wang, T., Gao, X. M., Xue, L. K., Wang, X. F., Wang, Z., Gao, J. A., Zhang, Q.
657 Z., and Wang, W. X.: Continuous observations of water-soluble ions in PM2.5 at Mount Tai
658 (1534 m.a.s.l.) in central-eastern China, J. Atmos. Chem., 64, 107-127, 2009.
659 Zuberi, B., Johnson, K. S., Aleks, G. K., Molina, L. T., and Laskin, A.: Hydrophilic
660 properties of aged soot, Geophys. Res. Lett., 32, 67-106, doi:10.1029/2004gl021496, 2005.
661

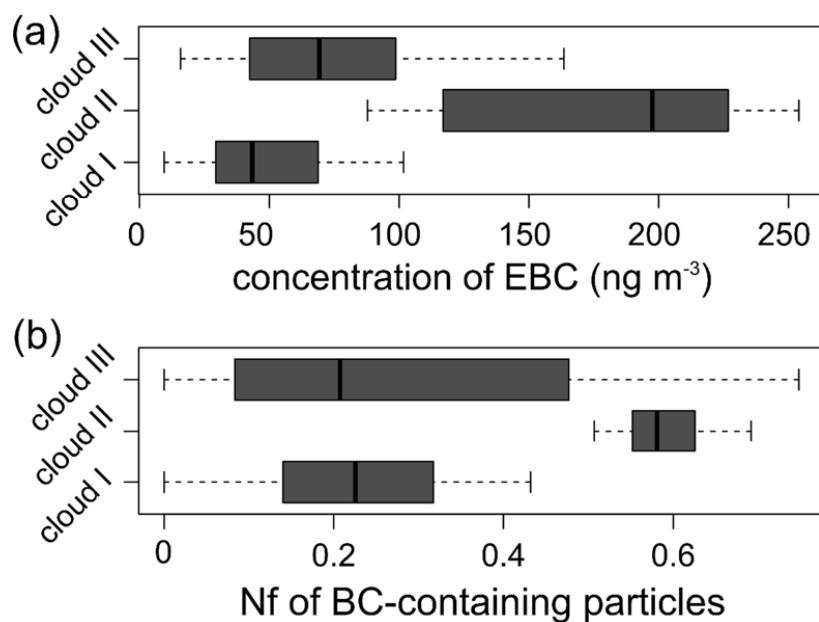
662 **Figure captions**

663 Fig. 1. Temporal profiles (with a 1 hour resolution) of PM_{2.5}, EBC mass concentrations,
664 number of BC-containing particles by SPAMS, RH and visibility. Three cloud events are
665 illustrated with black bars above the figure.

666 Fig. 2. Box and whisker plots of (a) concentration of EBC and (b) number fraction of
667 BC-containing particles for each cloud event. In a box and whisker plot, the lower, median
668 and upper lines of the box denote the 25th, 50th, and 75th percentiles, respectively, and the
669 lower and upper edges of the whisker denote the 10th and 90th percentiles, respectively.

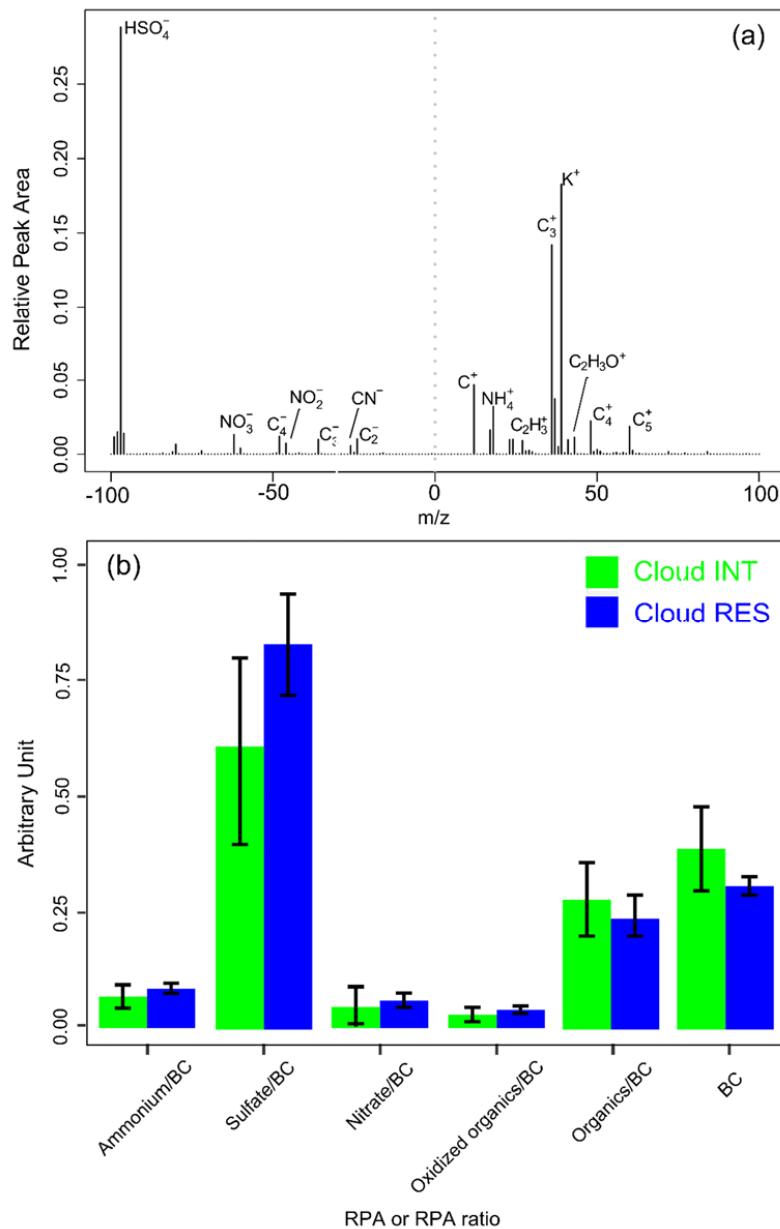

670 Fig. 3. (a) Average mass spectrum of cloud RES BC-containing particles, and (b) the
671 RPA ratios of ammonium, sulfate, nitrate, oxidized organic markers, and other organic
672 markers (i.e., m/z 27[C₂H₃]⁺, -26[CN]⁻, 37[C₃H]⁺, 50[C₄H₂]⁺, 51[C₄H₃]⁺, 61[C₅H]⁺, and
673 63[C₅H₃]⁺) to BC (carbon ion clusters (C_n^{+/−}, n ≤ 5)), and the RPAs of BC for cloud RES and
674 INT particles, respectively. Error bars represent the standard deviation in the hourly average
675 RPA or the RPA ratios within a 95% confidence interval.

676 Fig. 4. Normalized number size distributions of the cloud-free, INT, and RES
677 BC-containing particles. The data were averaged throughout the sampling period. The size
678 distribution obtained from the SPMS is not representative of the actual aerosol size distribution
679 due to the decreasing detection efficiencies at smaller sizes (Allen et al., 2000; Wenzel et al.,
680 2003; Qin et al., 2006). A representative comparison between the size distributions measured
681 by the SPAMS and the SPMS can be found in Fig. S12.


682 Fig. 5. Size-resolved Nf_{act} estimated for the BC-containing particles and all the detected
683 particles. The Nf_{act} is calculated as the ratio of the average number size distribution for the
684 cloud RES particles to the sum of the average number size distributions for the cloud RES and
685 INT particles. Errors were estimated assuming that the particle numbers detected by the
686 SPAMS follow a Poisson distribution.

687 Fig. 6. (a) Number fraction of each BC particle type in the cloud-free, INT, and RES
688 BC-containing particles, and (b) the number fraction of each BC particle type in the cloud
689 RES BC-containing particles separated for the three cloud events.

690


691 Fig. 1.

692

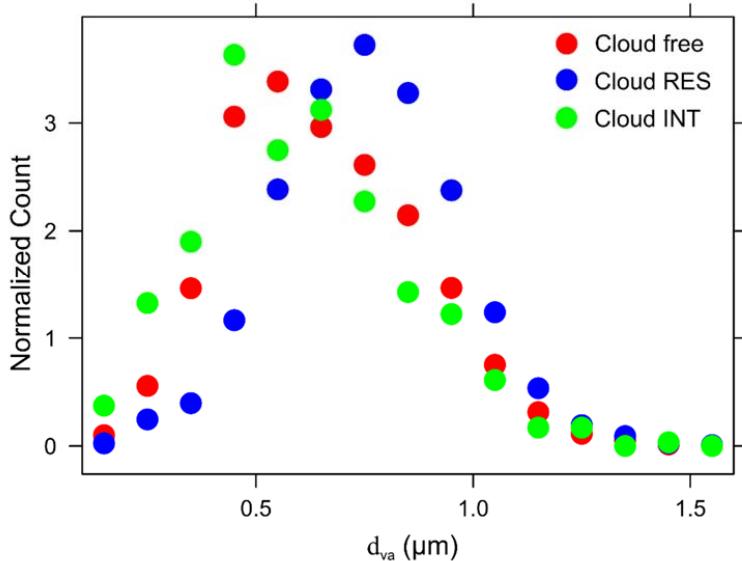
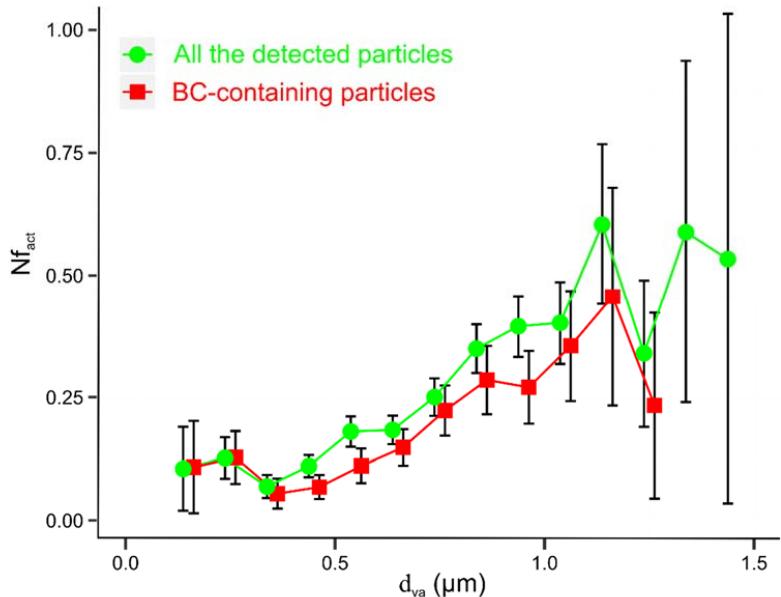

693

Fig. 2.

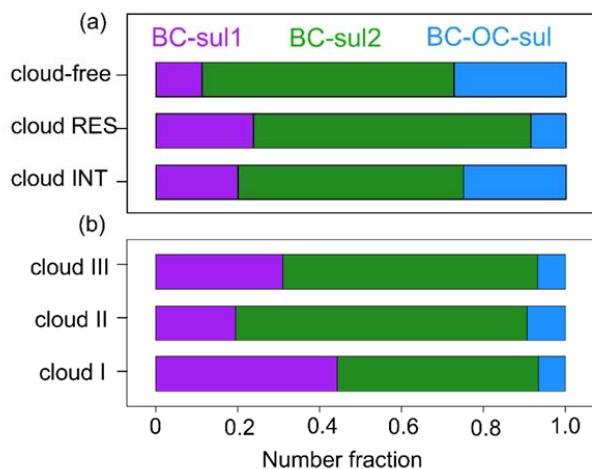

694

695 Fig. 3.

696

697 **Fig. 4.**

698


699 **Fig. 5.**

700

701 **Fig. 6.**

702

